Search results for "Cartan matrix"

showing 2 items of 2 documents

Representations of Affine Kac-Moody Algebras

1989

In the first chapter we explained how simple finite-dimensional Lie algebras can be completely characterized in terms of their Cartan matrices or Dynkin diagrams. The same holds for an arbitrary semisim-ple finite-dimensional Lie algebra. A semisimple Lie algebra is a direct sum of simple ideals which are pairwise orthogonal with respect to the Killing form. It follows that the Cartan matrix of a semisimple Lie algebra decomposes to a block diagonal form, each block representing a simple ideal. Similarly, the Dynkin diagram is a disconnected union of Dynkin diagrams of simple Lie algebras. Next we shall study certain infinite-dimensional Lie algebras which have many similarities with the si…

Pure mathematicsQuantum affine algebraDynkin diagramMathematics::Quantum AlgebraLie algebraCartan matrixNest algebraKilling formMathematics::Representation TheorySemisimple Lie algebraAffine Lie algebraMathematics
researchProduct

Star-products and phase space realizations of quantum groups

1992

It is shown for a family of *-products (i.e. different ordering rules) that, under a strong invariance condition, the functions of the quadratic preferred observables (which generate the Cartan subalgebra in phase space realization of Lie algebras) take only the linear or exponential form. An exception occurs for the case of a symmetric ordering *-product where trigonometric functions and two special polynomials can also be included. As an example, the ‘quantized algebra’ of the oscillator Lie algebra is argued.

AlgebraPure mathematicsSubalgebraCartan matrixCartan subalgebraReal formStatistical and Nonlinear PhysicsKilling formKac–Moody algebraMathematical PhysicsMathematicsLie conformal algebraGraded Lie algebraLetters in Mathematical Physics
researchProduct